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Investigating LLM-Powered Minority Support in
Power-Imbalanced Group Decision-Making:
Counterargument and Mediation as Intervention Strategies

ANONYMOUS AUTHOR(S)
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Minority Support System
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like a safe choice, but whether they're the best fit 
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Fig. 1. LLM-powered minority support system mediates between majority and minority group members
through two designs. The AI-generated Counterargument (AIGC) condition generated counterpoints to
the majority consensus, broadening the discussion and improving the group atmosphere. The AI-mediated
Message (AIMM) condition paraphrased minority input for anonymity but often reduced participants’
psychological safety and satisfaction.

Minority opinions are often suppressed in power-imbalanced group decision-making due to social pressure
to comply with the majority. To address this problem, we developed an LLM-powered minority support
system that aimed to foster attention to minority views through either AI-generated counterarguments
or AI-mediated messages. We conducted a mixed-method experiment with 96 participants in 24 groups,
comparing minority members’ experiences across baseline, AI-counterargument, and AI-mediated message
conditions. Our findings revealed a nuanced trade-off: AI-generated counterarguments fostered a more flexible
atmosphere and enhanced satisfaction, while AI-mediated messaging increased minority participation but
unexpectedly reduced their psychological safety. This research contributes empirical evidence on how different
AI implementations affect group dynamics, identifies a critical support paradox between participation and
psychological safety, provides design implications for future systems, and highlights ethical challenges in
implementing AI-mediated communication in hierarchical settings. These insights advance understanding of
designing more equitable AI support for power-imbalanced group decision-making.

CCS Concepts: • Human-centered computing → Computer supported cooperative work; Collaborative
interaction; Natural language interfaces; HCI theory, concepts and models.

Additional Key Words and Phrases: group decision-making, conversational agents, critical thinking, social
influence, llm
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1 Introduction
Power imbalances in group decision-making frequently suppress minority perspectives, restrict the
diversity of ideas, and weaken overall outcomes [49]. Compliance pressures often lead individuals
to publicly align with the majority despite private disagreement, undermining psychological
safety and discouraging meaningful participation from less-empowered members [53, 69]. While
collaborative processes help groups solve complex challenges, support individual learning, and lead
to more accurate and creative outcomes across domains such as healthcare, education, and research
[35, 64, 86, 87], these benefits could be worsened and diminished, especially when hierarchical
structures or conformity suppress dissent. In an effort to address barriers to have more balanced,
active participation, recent studies have introduced AI-powered interventions that facilitate idea
generation, consensus-building, and alternative viewpoint introduction to encourage engagement
and mitigate groupthink [13, 54, 81]. These interventions typically operate through four underlying
mechanisms: by regulating atmosphere, using affective cues to foster supportive group atmosphere;
by balancing participation, prompting quieter members and curbing dominance to promote equity;
and by diversifying perspectives, ensuring that groups consider a broader set of alternatives.

However, most AI-powered interventions are designed around the assumption that all members
have equal standing and fair opportunities to contribute to participation and consensus-building.
The existing approaches may improve aggregate engagement, but it is underexplored how they
effectively address the challenge of supporting and amplifying minority voices under conditions
of unequal power. Research on supporting and amplifying minority voices has also explored the
potential of systematic interventions, such as anonymous feedback platforms and automated
counterargument generators, to address these issues [22, 46, 57]. Yet, there is a significant gap,
especially in how to represent authentic minority voices or adequately safeguard psychological
safety and anonymity, which is crucial for minorities’ experiences in group decision-making.

To address this gap, this research empirically investigates how LLM-powered minority support
interventions can foster psychologically safe and equitable environments for minority members ex-
pressing dissent in hierarchical decision-making settings. We designed two intervention conditions:
an AI-generated Counterargument (AIGC) condition, where the AI produces alternative viewpoints
automatically for every four turns and counterpoints to stimulate discussion, and an AI-mediated
Message (AIMM) condition, which extends AIGC by allowing minority members to send private
inputs to the AI that are then paraphrased and introduced as system contributions. This dual func-
tionality allows minority members to express dissenting views without fear of social consequences,
potentially enabling individuals experiencing compliance pressure to feel more psychologically
secure, participate more actively, and gain greater satisfaction with group decision processes. We
examine the influence of these conditions on group decision making under compliance pressure
with the four factors. To what extent do these conditions affect Perceived psychological safety
(RQ1), Engagement (RQ2), Satisfaction with decision-making processes and outcomes
(RQ3), and Cognitive workload of participants in hierarchical discussions (RQ4)?

To investigate these questions, we conducted a mixed-methods study with 96 participants
organized into 24 groups of four members each. Each group included three members assigned
as high-power majority (seniors) and one member as low-power minority (junior), with roles
randomly assigned. We employed a mixed experimental design with participant type (majority vs.
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minority) as a between-subjects variable and type of LLM-powered minority support (AIGC, AIMM)
as a partially within-subjects variable. Our findings indicate that AI-generated counterarguments
improved group atmosphere and participant satisfaction while enabling the minority member to
submit anonymous opinions through AI increased discussion but reduced psychological safety and
satisfaction for minority participants. These results underscore the complex trade-offs between
amplifying minority voices and maintaining psychological safety when using LLM-powered support
for minority in group decision-making.
This research makes four key contributions to CSCW. First, we empirically demonstrate how

different LLM-powered minority support interventions affect minorities’ experiences under power-
imbalanced group decision-making, revealing that AI-generated counterarguments foster better
discussions and satisfaction compared to AI-mediated minority messaging. Second, we identify a
critical trade-off in minority support: while AI-mediated messaging increases minority participation,
it simultaneously decreases their psychological safety, challenging assumptions about anonymous
communication channels. Third, we provide design implications for future AI-powered minority
support, focusing on agency, anonymity, and transparency. Finally, we highlight ethical considera-
tions for implementing AI systems in hierarchical decision-making contexts. The remainder of this
paper is structured as follows: we review related work on group decision-making and AI-mediated
communication, describe methodology, present findings, discuss implications, and conclude with
limitations and future research directions.

2 Related Work
2.1 The Impact of Social Influence and Power on Group Decision-making
Group decision-making leverages collective intelligence to produce superior outcomes across
various domains [35, 64, 86], but these processes are significantly shaped by social influence and
power dynamics [53, 69]. Social influence theory suggests that individuals tend to adjust their
behavior to meet social demands, with the majority’s opinions exerting particularly strong pressure
on those with less power in the group. Moscovici’s conversion theory specifically explains that
multiple influences trigger a comparison process resulting in compliance - a form of conformity
where individuals outwardly agree while maintaining private disagreement [69]. This compliance
is typically direct, immediate, and temporary, serving as a coping mechanism in power-imbalanced
situations rather than reflecting genuine belief change.

Power dynamics become especially problematic in hierarchical settings where power imbalances
are formalized through reward and legitimate power structures [28]. Kelman’s framework provides
particular insight here, identifying compliance as an initial response to power where individuals
conform primarily to avoid repercussions or gain rewards, rather than from genuine conviction [53].
This dynamic is especially evident among minority members, who are often treated as outgroup
members and experience isolation. The effect is particularly pronounced when the size disparity
betweenmajority andminority groups is substantial. The resulting self-censorship triggers a cascade
of negative effects: as minority voices are silenced, groups lose access to diverse perspectives that
could enhance decision quality, ultimately leading to groupthink, where the desire for consensus
overrides critical evaluation of alternatives [48, 49, 52].
Traditional social psychology offers several approaches to address compliance and prevent its

progression to groupthink in group settings. The devil’s advocate technique addresses group-
think by assigning someone to challenge prevailing viewpoints, stimulating opinion diversity
[63, 65, 71, 78, 79]. However, this method doesn’t directly solve the underlying compliance issues
and faces significant limitations: designated advocates often lack authentic dissenting perspectives,
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4 Anon.

risk social ostracism when challenging powerful members, and cannot accurately represent unex-
pressed minority viewpoints [47, 71, 77]. Other compliance-reduction strategies include leadership
interventions to create psychologically safe environments [24] and anonymous feedback channels
[50]. However, these methods face practical challenges: leadership interventions rely on the leader’s
skills, and anonymous feedback often fails in small groups where unique opinions reveal identities.
This research addresses these limitations by exploring how conversational AI might provide both
psychological safety and true anonymity while preserving the benefits of diverse perspectives in
decision-making processes.

2.2 AI-powered Approaches to Improving Group Decision-Making
AI-assisted decision-making has evolved from individual-focused applications [7, 17, 56] to increas-
ingly explore group contexts [62, 80, 95]. While researchers have developed various AI roles for
group settings—including facilitators [54], creativity enhancers [40, 45], conflict mediators [21, 36],
and consensus builders [73, 81, 85]—these approaches have revealed certain challenges. Groups
may over-rely on AI recommendations without sufficient critical evaluation [12]. AI systems often
struggle with the social nuances of group interactions such as interpreting implicit signals and
considering relational context [89, 96]. Despite these advances, existing research has critically
overlooked how AI might specifically address power imbalances in group settings—situations
where asymmetrical relationships allow certain members to exert disproportionate influence over
discussions and decisions [27, 53].
This research gap around power imbalances frequently leads to the suppression of minority

perspectives in group decision-making [49, 69]. The few studies that have attempted to support
minority participants face a critical challenge: how to amplify marginalized voices without drawing
unwanted attention to them. Researchers caution that overly targeted forms of support may
inadvertently spotlight minority members, increasing discomfort and undermining the intended
supportive function [22, 31, 32, 46]. Others caution that even well-intended interventions to support
non-dominant members, such as less proficient speakers, can be perceived as disruptive or unfair,
highlighting the complexity of fostering equitable participation in group interactions [57]. This
research addresses this specific gap by investigating how LLM-powered interventions can support
minority perspectives in power-imbalanced groups without explicitly identifying these members. By
examiningAImechanisms that challengemajority opinionswhile protecting vulnerable participants,
we offer a novel approach to balancing power in group decision-making. In particular, we focus on
systems that automatically generate counterarguments to group consensus (AIGC) and systems that
paraphrase minority input as anonymous contributions (AIMM) to investigate how such designs
might support more equitable outcomes without undermining psychological safety.

2.3 AI-Mediated Communication for Group Interaction
AI-mediated communication (AIMC) encompasses scenarios where "a computational agent operates
on behalf of a communicator by modifying, augmenting, or generating messages to accomplish
communication or interpersonal goals" [38]. Recent studies in AIMC illustrate that there are a
variety of ways in which humans and AI can interact during communication. For instance, humans
may turn to AI for help in generating content [38], or the AI might proactively offer suggestions
about how to communicate more effectively [20]. There are also cases where AI can rephrase
or present a user’s message in different ways, or facilitate the sharing of perspectives within a
group [81, 88]. These approaches highlight the flexible roles that AI can play in supporting and
enhancing interpersonal or group communication. While previous AIMC applications focused on
text enhancement through smart replies and word suggestions [29, 38], these approaches primarily
addressed surface-level communication issues without considering how power dynamics affect
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whose voices are heard and valued in group settings. Previous systems have not adequately explored
how AI might reshape power structures by providing safer channels for expression. AIMC has
significant potential to reconfigure group dynamics because it influences communication patterns,
conversational tone, trust relationships, and interpersonal dynamics [42, 67, 74, 76].
Although Shin et al. investigated consensus-building through asynchronous AI-mediated com-

munication [81] in collaborative work, their approach did not address power imbalances or minority
support directly. This research extends AIMC concepts into group decision-making contexts with
a specific focus on power dynamics and minority representation. We address existing gaps by
implementing two LLM-powered intervention approaches: one that mediates minority voices
(AIMM Pattern) and one that autonomously generates counterarguments without direct minority
input (AIGC pattern). Especially, the AIMM pattern allows minority voices to be expressed with-
out revealing their source, thereby reducing the social risk that often prevents minorities from
speaking up in power-imbalanced settings [50, 83]. By utilizing this pattern to convey minority
voices while ensuring their anonymity, we create a mechanism that potentially reduces social
influence biases. This approach builds on AI-enhanced group support systems discussed in Section
2.2, but specifically positions the AI as a Devil’s Advocate (AIGC condition) and AI as a Minority
Voice Amplifier (AIMM condition) rather than just a facilitator, allowing it to present alternative
viewpoints that might otherwise remain unexpressed. By comparing these two implementations, we
can better understand the impact involved when designing AI systems to support minority voices in
power-imbalanced group settings. In conclusion, this research builds upon established AI-mediated
communication frameworks [29, 38, 88] while targeting the challenges of power imbalances in
collaborative decision-making.

3 System Design & Implementation: LLM-powered Minority Support System
3.1 System Concept and Design Rationale
3.1.1 System Concept and Working Definition. This study presents two AI tools that help minority
voices in group decisions: (1) an AI-generated Counterargument (AIGC) system that creates op-
posing views to expand discussion, and (2) an AI-mediated Minority Message (AIMM) system that
shares minority members’ ideas anonymously while also creating counterarguments. These ideas
come from traditional devil’s advocate methods, which aim to encourage reflection by introducing
disagreement. However, these methods often become fake or isolate the person assigned to disagree
[47, 71, 77]. Also, they do not give minorities a safe way to communicate, especially in groups with
power imbalances, highlighting the need for alternative designs that both expand discussion and
provide secure channels for dissent.

We frame both AIGC and AIMM under the broader concept of an LLM-powered Minority Support
System. This system is a real-time conversation agent that joins group discussions with two goals:
(a) expanding group thinking through counterarguments and (b) protecting minority voices through
anonymous sharing. In the AIMM condition, keeping the counterargument function is important.
Without it, the system would look like a simple anonymous suggestion box, making it clear that
someone in the group disagrees, which can be dangerous in closed or conformist settings. To
preserve anonymity, the agent intentionally withholds the provenance of its utterances, so the
majority cannot tell whether any given message is an autonomous counterargument or a revoiced
minority input. By combining counterargument creation with message sharing, AIMM makes
minority dissenting input look the same as the agent’s own ideas, creating better anonymity. When
no minority input exists, the agent summarizes current opinions and asks questions that invite
different perspectives. This definition applies to our specific design, where the system acts as an
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interactive participant in group talk that maintains critical thinking while protecting vulnerable
voices.

3.1.2 Design Scope and Rationale. The LLM’s counterargument generation and paraphrasing
capabilities are critical technical components in this system. Our research focuses primarily on
the social and psychological impacts of introducing such a system into group decision-making
processes. Building on this scope, we structured the AI’s counterargument approach based on
previous research in AI-assisted decision-making. We implemented five key design considerations
to maximize effectiveness. While the majority of these design features apply to both AIGC and
AIMM, the anonymous revoicing mechanism is specific to AIMM. First, we generated feedback at
regular eight-turn intervals to maintain engagement without overwhelming participants, allowing
natural conversation flow. The eight-turn interval was chosen to allow each participant in our
four-person groups to make at least two comments—one expressing their own opinion and one
responding to another’s—before intervention. Second, we designed the system to ask questions
rather than provide direct logical counterarguments, as research indicates this approach more
effectively prompts participants to think critically [17, 93]. Third, we employed persuasive rather
than confrontational rhetoric, as persuasive language better promotes critical thinking in AI-
human interactions [84]. Fourth, we deliberately avoided repeating previous statements to prevent
redundancy when group opinions remained static during short decision-making sessions with no
direct AI interaction [68, 92]. Finally, in the AIMM condition, the system presents paraphrased
human input as its own opinions, creating a fully anonymous channel for minority viewpoints while
protecting contributor identity. These considerations work together to promote critical thinking
and preserve anonymity throughout group discussions.

3.2 System Architecture and Implementation
We developed a custom online chat environment to enable integration of an LLM-powered Devil’s
Advocate agent and to conduct controlled group discussions. The frontend uses TypeScript (React)
and the backend uses Python (FastAPI). The LLM (OpenAI GPT-4o) interfaces with system modules,
with Retrieval-Augmented Generation used only for referencing and paraphrasing direct messages
sent to the LLM-powered Devil’s Advocate.

Drawing on findings that LLMs often struggle to access mid-conversation information [59], we
employ a multi-agent architecture to clearly detect the ’majority opinion’ and encourage construc-
tive discourse (Figure 2 & Appendix A): (A) Summary Agent – Consolidates emerging majority
opinion to overcome LLM limitations in retaining mid-dialogue content [59]. (A’) Paraphrase
Agent – Responds exclusively to direct messages from juniors, rearticulating their dissenting
views as though originating from the AI itself. These messages are stored in a database with an
"isUsed" property; the agent retrieves entries where "isUsed" is false, sets it to true, paraphrases the
content, and outputs it as system-generated text. (B) Conversation Agent – Encourages alterna-
tive perspectives by first empathizing with the other person’s point of view and then offering a
gentle counterargument using a Socratic style. (C) AI Duplicate Checker – Identifies repetitive
content by calculating semantic similarity between sentence embeddings generated using the
‘paraphrase-multilingual-MiniLM-L12-v2’ model on an NVIDIA A6000.

4 Methods
The purpose of this study was to investigate the influence of the two AI interventions (AIGC
and AIMM) on psychological safety and satisfaction of low-power minority in power-imbalanced
group-decision making. To simulate situations where a low power minority member experiences the
pressure to comply with majority opinions, we asked one of the participants from each group to play
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Fig. 2. System Overview and Example Task Scenario. The figure illustrates a team leader promotion decision
task, where participants discuss candidate qualifications in a chat interface. Minority members can privately
share dissenting views via direct messages (DM) to the system, which reformulates and presents them as AI-
mediated messages. If there is no DM with an opposing opinion, the system will send out a counterargument
that it has generated on its own. The system architecture consists of a chat interface, database, and server,
processing both public discussions and private DMs through four key agents: (A) Summary Agent for analyzing
public opinion, (A’) Paraphrase Agent for rephrasing minority views, (B) Conversation Agent for generating
contextual counterarguments, and (C) AI Duplicate Checker for ensuring message novelty via cosine-similarity
comparison.

a role as a Junior member in the group, representing their low-power minority positions, whereas
the other participants were asked to play a Senior role, representing their high-power majority
positions. We compare two AI-supported interventions—AI-Generated Counterarguments (AIGC)
and AI-Mediated Messages (AIMM)—against a baseline condition to assess their effectiveness.
Measurement evaluates psychological safety, engagement levels, decision quality perceptions,
cognitive workload, and perception of AI across experimental conditions.

4.1 Participants
We recruited 96 Korean participants (age 𝑀 = 26.60, 𝑆𝐷 = 5.21, range = 19–42) and randomly
assigned them into 24 groups of four. Each group consisted of three high-power majority members
and one low-power minority member. Participants were recruited online and met the following
inclusion criteria: Korean nationality, age over 18, prior experience in group decision-making, and
familiarity with online chat environments. All participants were informed about the anonymous
nature of the study and briefed on the procedures at the beginning of each session. They were
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The Majority The Minority
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AI Agent

B. AIGC Condition

The Majority The Minority

AI Agent DB

Different Perspective

C. AIMM Condition

AI-generated
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Fig. 3. Experimental Conditions: Baseline shows the baseline group chat configuration with majority (blue)
and minority (pink) participants. AIGC introduces an AI-powered minority support system that generates
rebuttals during group discussions. AIMM extends this by enabling the minority member to privately send
counterarguments to the AI system, incorporating them into its responses while maintaining anonymity.

reminded of their right to withdraw at any time. If any participant withdrew or did not consent, the
session was canceled, and the remaining participants received 1,000 KRW as base compensation.
All data were coded and de-identified to protect participant anonymity, including survey responses,
interview transcripts, and chat records.

Demographic information included gender (61 female, 35 male) and education level: 46.9% held a
bachelor’s degree, 19.8% a master’s degree, 15.6% had some college education, 13.5% completed high
school or equivalent, and 4.2% held doctoral degrees. On average, participants had 2.50 years (𝑆𝐷 =
3.15) of professional working experience. Additional background variables included self-reported
familiarity with AI (𝑀 = 4.83, 𝑆𝐷 = 1.48), prior experience with group decision-making (𝑀 = 5.01,
𝑆𝐷 = 1.41), and online collaboration (𝑀 = 4.39, 𝑆𝐷 = 1.83). Notably, 53.1% of participants reported
prior use of AI in group contexts. While the sample enabled consistent group composition and
balanced assignment, the relatively high AI familiarity and cultural context (Korean participants)
should be considered when interpreting generalizability.

4.2 Experiment Conditions
This study examines how different system conditions and participant types affect group communi-
cation under compliance pressure. Each participant experienced one of two system conditions: the
AI-generated Counterargument condition or AI-mediated Message condition, alongside a common
Baseline condition. Participants were randomly assigned to a role within each group: the Majority
with High Power (Seniors) or the Minority with Low Power (A Junior).

4.2.1 System Conditions. To investigate how AI intervention shapes group dynamics, we designed
three system conditions (Figure 3):

• Baseline: A standard group chat setting without AI involvement. This condition served as
the control for natural group discussion.

• AI-Generated Counterargument (AIGC) Condition: This condition introduced an LLM-
powered intervention that periodically and automatically generated counterarguments
during the group discussion, inspired by the concept of Devil’s Advocate. The AI functioned
independently, without access to private user input. The goal was to evaluate the pure effect
of AI-led critical questioning on group discourse, separate from any anonymity or revoicing
mechanisms, because the system design claims to be a devil’s advocate. This condition
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reflects the core concept of a Devil’s Advocate as a neutral agent that challenges group
consensus.

• AI-Mediated Message (AIMM) Condition: This condition introduced the AI-mediated Mi-
nority Message (AIMM) as a hybrid design that combined AI-generated counterarguments
with mediated messaging. Unlike AIGC, where the AI autonomously generated dissenting
points, AIMM allowed the minority member to retain control by providing input that the AI
would then paraphrase and revoice anonymously. This enables minority members to decide
when, how, and with what intent to prompt the AI, allowing them to generate counterargu-
ments while preserving complete anonymity. Through this condition, we aimed to create
and explore a mechanism that would both protect minority members from hierarchical risks
and encourage more active dissent and participation in group deliberation. Please note that
the existence and availability of this feature were known only to the minority participant
to explore this effectively.

To examine the unique effect of the AIMM condition, it was necessary to also test the AIGC
condition alongside baseline; by comparing across all three, we could disentangle the impact of
AI acting merely as a generalized Devil’s Advocate from the additional benefits of mediating
minority voices through private, anonymous revoicing. To avoid revealing the experimental intent,
each participant experienced only two of the three conditions: the baseline and one of the system
conditions (AIGC or AIMM). This design minimized the risk that minority participants would
recognize the specific purpose of the study or become aware of systematic differences between the
two AI conditions, which could have altered their behavior.

4.2.2 Participant Types. We created controlled compliance situations by manipulating two key
mechanisms for participants’ type: social power and majority’s social influence (Figure 4). Social
power differences were implemented based on Kelman’s Theory of Attitude Change [53] and French
and Raven’s bases of power [28]. We established a senior and junior hierarchy that created both
legitimate and reward power, as validated in prior research [43, 44]. Seniors could allegedly allocate
additional compensation to the Junior, while Juniors were informed their compensation depended
on Senior evaluations, creating a situation where expressing dissent carried personal risk. Majority
influence was implemented following Moscovici’s Social Conversion Theory [69], using a 3:1
majority-to-minority ratio. This ratio was chosen based on research showing conformity pressure
increases significantly with up to three majority members but plateaus beyond that [2, 5, 27, 34].
We provided different contextual information to guide the majority and minority participants
toward different initial perspectives on the task. We employed role-playing methodology rather
than recruiting participants with pre-existing beliefs to ensure consistent experimental conditions.
This approach enabled a systematic investigation of compliance behavior in controlled scenarios.
Based on these manipulations, participants were assigned to one of two roles:

• Majority withHigh Social Power (Three Seniors): Three participants per group received
context information guiding them toward consensus positions and were given authority
through the Senior designation and reward allocation powers.

• Minority with Low Social Power (One Junior): One participant per group received
context information encouraging a perspective distinct from the majority while being
positioned in a lower-power role dependent on Senior evaluation.

By integrating both social power and majority influence mechanisms, we specifically targeted
compliance as our experimental manipulation rather than examining each mechanism in isolation.
This allowed us to evaluate how effectively our system supported minority participants under
realistic compliance conditions.
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Fig. 4. Theoretical Framework for Manipulating Compliance: This diagram illustrates our two-pronged ap-
proach to inducing experimental compliance: through social power (left) and the majority’s social influence
(right). The framework progresses from theoretical foundations (Kelman’s and Moscovici’s theories) to practi-
cal implementation (using legitimate/reward power and situational contexts), resulting in an experimental
setup where a low-power minority(Junior) is positioned against high-power majorities(Seniors) to elicit
compliance.

4.3 Task Description
To create an immersive and compliance-inducing environment aligned with legitimate power roles,
we designed two decision-making tasks that simulate realistic corporate scenarios. These tasks
were selected to reflect the typical responsibilities and risk sensitivities associated with hierarchical
roles in organizations, thereby reinforcing the assigned roles of Seniors (Majority with High Power)
and Juniors (Minority with Low Power). The first task, team leader promotion, was adapted from
prior studies in social psychology and AI-assisted group decision-making [4, 46, 55]. To ensure each
participant experienced two distinct but structurally similar tasks, as required by the within-subject
design, we developed a second task, the contractor selection task. This new task mirrors the decision
logic of the first but is novel and was created specifically for this study.
Participants viewed task descriptions that differed by assigned role. This role-specific framing

aimed to enhance task immersion by aligning each participant’s goals with their social power
(Appendix B):

• Seniors were told theywere responsible for the company’s long-term stability and reputation.
They were instructed to make decisions that reflected conservative, proven judgment and
risk mitigation.
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• Juniors were told they needed to demonstrate their value to the organization by making
bold, high-impact decisions. They were encouraged to pursue visible results even at the
cost of taking risks.

Each task presented three options: 1) A conservative option: low risk, long-term proven per-
formance, but little immediate impact. 2) A challenging option: high potential but unproven,
associated with visible outcomes and greater uncertainty. 3) A neutral option: a middle-ground
choice that was relatively unattractive and intended as a control. Both tasks were intentionally
structured to guide seniors toward the conservative option and juniors toward the challenging
option, thereby creating natural opinion divergence between roles. This divergence was crucial to
inducing majority-minority dynamics and enabling the study of compliance under controlled but
immersive conditions.

4.4 Experimental Procedure
Each session lasted approximately 90 to 105 minutes and was organized into three main phases
(Figure 5): pre-experiment setup, main task session, and post-experiment survey and interviews.
The procedure was designed to ensure immersion and maintain power dynamics.

Before the main tasks, participants completed a series of preparatory activities online on the day
of the experiment:

• Demographic and Background Survey: Participants submitted information on age, edu-
cation, work experience, and prior familiarity with AI, group decision-making, and online
collaboration.

• Agreement to Participation: Participants reviewed consent materials and confirmed their
participation. If any participant declined, the session was canceled, and the remaining
participants received 1,000 KRW compensation.

• Ice-breaking Activity (10 min): Using an anonymous commercial chatting platform
such as 1KakaoTalk, participants introduced themselves using pseudonyms, created a team
name, and collaboratively defined a slogan to become familiar with anonymous online chat
environments. This activity aimed to establish group cohesion while maintaining role-based
power distinctions.

Each group completed two decision-making blocks, with the system condition (Baseline + either
AIGC or AIMM) and task order counterbalanced across sessions:

• Decision-Making Task (20 min): Participants engaged in structured group discussions
within an experimental chat platform (Figure 2). Each task presented the three options
designed to create opinion divergence between Seniors and juniors.

• Self-Reported Questionnaire (5 min): After each task, participants completed a survey
assessing psychological safety, decision satisfaction, cognitive load, and perception of
interaction with each devil’s advocate.

The session concluded with role-specific exit procedures:
• Agreement Questionnaire (5 min): Each participant indicated how strongly they preferred
their chosen option for their assigned role in each task, reflecting how immersed they felt
in the given situation.

• Senior Exit Interview & Reward Decision (20 min): The three seniors participated in
a joint 2Zoom interview, reflecting on the group’s performance and dynamics. Then, the

1KakaoTalk: https://www.kakaocorp.com/page/service/service/KakaoTalk?lang=en
2Zoom: https://www.zoom.com/
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Iteration

Fig. 5. Overview of the experimental procedure: including pre-experiment surveys, ice-breaking, iterative
decision-making tasks, post-task questionnaires, and role-specific exit interviews.

seniors jointly decided whether to allocate a bonus reward to the Junior, reinforcing the
reward-based power structure.

• Junior Exit Interview (10 min): After a brief waiting period during the reward decision
phase, the Junior completed a private interview to share their individual experiences.

Although all participants received equal final compensation (20,000 KRW), the process preserved
the perception of differential power, crucial for studying compliance and communication behavior.

4.5 Measurement
This study employed both self-reported and objective measures to assess how system conditions
and participant type influenced group dynamics. Self-reported measures captured participants’
subjective experiences using 7-point Likert scales (1 = strongly disagree, 7 = strongly agree). These
included the agreement questionnaire, psychological safety, satisfaction with the decision-making
process and outcome, cognitive workload, and perceptions of the AI system. Objective behavioral
measures were used to quantify participants’ engagement in the group discussion (Appendix C).

• Validation of Induced Opinion (Study Premise): To confirm that the experimental tasks
successfully induced role-based opinion divergence, participants rated their preference for
each of the three decision options prior to the main experiment. Ratings were collected
using a 7-point Likert scale. Participants were expected to prefer the option that matched
their assigned role in each situation, with seniors choosing the conservative option (option
1) and juniors choosing the ambitious option (option 2). This served as a manipulation
check to validate the foundation of our compliance-oriented design.

• Psychological Safety and Compliance (RQ1): We assessed participants’ feelings of safety
in expressing dissent using establishedmeasures of psychological safety andmarginalization.
These items gauged the extent to which participants felt heard, supported, and free to express
disagreement within their group [10, 24, 46, 48].

• Engagement in Group Discussion (RQ2): Engagement was the only objective behavioral
metric used in this study. It was operationalized as each participant’s level of contribution
to the conversation, measured by 1) the number of messages sent and 2) the total number
of characters typed during the task.

• Perception of Decision-Making Process and Outcomes (RQ3): Participants rated the
quality of the group decision-making process across several dimensions, including influence,
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Table 1. Robust regression coefficients (𝛽) and standard errors (SE) for the Validation of Majority & Minority
Manipulation. Baseline is Option 1 – Junior. Stars denote significance (* 𝑝 < .05, ** 𝑝 < .01, *** 𝑝 < .001).

Predictors

Task Intercept Option 2 vs. Option 1 Option 3 vs. Option 1 Senior vs. Junior Option 2×Senior Option 3×Senior

Task 1 2.26 (0.42)*** 3.89 (0.59)*** 1.08 (0.59) 3.29 (0.48)*** -5.42 (0.68)*** -4.22 (0.68)***
Task 2 2.76 (0.37)*** 2.38 (0.52)*** 2.02 (0.52)*** 3.28 (0.43)*** -5.70 (0.61)*** -4.73 (0.61)***

group cohesion, support from teammates, and consideration of diverse opinions [13, 16, 23,
30, 57]. Decision outcome quality was assessed through satisfaction and perceived validity
of the group’s final choice [9, 11, 61, 72, 91].

• Cognitive Workload (RQ4): Cognitive workload was measured using the NASA Task Load
Index (NASA-TLX), which assesses task difficulty across five dimensions, including mental
demand, temporal demand, performance, effort, and frustration [39].

• Perception of the AI System (Exploratory): To contextualize how participants experienced
AI-mediated support, we collected ratings across four dimensions: cooperation, satisfaction,
quality, and fairness [13, 75, 94]. These measures assessed user trust and acceptance of the
AI’s role in shaping group dynamics.

Data were analyzed using robust regression models with random effects, suitable for the repeated-
measures design and small-group variance. Bonferroni post-hoc tests compared outcomes across
experimental conditions and participant types.
In addition to quantitative and behavioral measures, semi-structured exit interviews captured

participants’ subjective experiences. Juniors participated in one-on-one interviews, while Seniors
took part in a group interview. Key topics included role immersion, psychological safety, group
dynamics, and perceptions of the AI system. For the AIMM condition, juniors were also asked about
their experience with the secret messaging feature. Exit interview questions addressed comfort
in expressing opinions, experiences of conformity or pressure, and the perceived impact of AI
during discussions. After obtaining consent, all interviews were recorded and transcribed using a
commercial speech-to-text service (3Clova Note). Interview transcripts were briefly reviewed to
identify common themes that could help explain the quantitative results.

5 Findings
The experimental results showed that the senior and junior participants had different decision-
making patterns. Juniors preferred challenging options, while seniors favored stable ones, with
final group decisions aligning with senior preferences 80% of the time. LLM-powered minority
support had mixed impacts: AI counterarguments somewhat improved junior participation, but
AI-mediated communication increased their cognitive load. While seniors’ experiences remained
stable across conditions, juniors’ psychological safety and satisfaction varied based on the AI
interventions. The following sections examine role-based preferences, the AI interventions’s effects
on psychological safety (RQ1), engagement patterns (RQ2), decision-making experience and satis-
faction (RQ3), cognitive workload (RQ4), and emergent ethical implications. All measured details
are in Appendix D.

5.1 Validation of Majority and Minority Manipulation (Experimental Setup)
To validate the experimental setup, we examined whether the role-based preference manipulation
effectively created consistent majority and minority positions. Each task presented participants
3Clova Note: clovanote.naver.com
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(A) Task 1: Team Leader Promotion (B) Task 2: Contractor Selection

Fig. 6. Role-based differences in option preferences for (A) Task 1 and (B) Task 2. Preferences were measured
on a 7-point Likert scale, with seniors favoring stable options (Option 1), while juniors preferred challenging
alternatives (Option 2). Neutral options (Option 3) were generally rated lower by both roles, reflecting distinct
preference patterns driven by role dynamics. Brackets indicate statistically significant pairwise differences
based on Bonferroni-adjusted post-hoc tests (p < .05). Only significant comparisons are shown.

with three options: a stable but less innovative choice (Option 1), a more challenging alternative
(Option 2), and a neutral option (Option 3). Seniors were expected to prefer the stability of Option 1,
while juniors were guided toward the more ambitious Option 2. As shown in Table 1 and Figure 6,
participants’ choices aligned with this design: seniors consistently rated Option 1 highest (𝑀 =
5.28, 𝑆𝐷 = 2.21 for task 1, 𝑀 = 5.88, 𝑆𝐷 = 2.92 for task 2), and juniors rated Option 2 highest (𝑀
= 5.96, 𝑆𝐷 = 1.68 for task 1, 𝑀 = 5.00, 𝑆𝐷 = 1.89 for task 2). These divergent patterns emerged
clearly across both tasks, with statistically significant differences between roles for both primary
options. The neutral Option 3 was consistently rated lower, suggesting it did not attract strong
preference from either group. These results confirm that the role framing induced the intended
preference structures, effectively producing conditions where one viewpoint dominated in each
group while another remained in the minority. Notably, participants showed slightly more openness
to challenging alternatives in the Team Leader Promotion task and favored more stable choices
in the Contractor Selection task, reflecting task-specific variation within the overall successful
manipulation.

5.2 Psychological Safety (RQ1)
Quantitative results show that the manipulation of AI roles shaped participants’ perceptions of
psychological safety and marginalization, particularly among juniors. As shown in Table 3-(A)
and Figure 8-(A), juniors reported the lowest psychological safety in the AIMM condition (𝑀=3.17,
𝑆𝐷=1.53), compared to the Baseline (𝑀=4.25, 𝑆𝐷=2.05) and AIGC conditions (𝑀=4.08, 𝑆𝐷=2.15). A
robust regression confirmed a significant drop in psychological safety for juniors in AIMM relative
to Baseline (𝛽=-1.40, 𝑆𝐸=0.28, 𝑝<.001), as well as a significant interaction effect with role (𝛽=1.49,
𝑆𝐸=0.32, 𝑝<.001). In contrast, seniors reported consistently high psychological safety across all
conditions, with no meaningful variation.
Marginalization scores followed a similar pattern. Juniors in AIMM reported the highest levels

of marginalization (𝑀=4.42, 𝑆𝐷=2.02), compared to Baseline (𝑀=3.46, 𝑆𝐷=2.23) and AIGC (𝑀=2.92,
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(A) Number of Messages (B) Number of Characters

Fig. 7. Contribution and engagement patterns across conditions (Baseline, AIGC, AIMM) measured by (A)
number of messages, (B) number of characters typed. No significant differences were found in Bonferroni-
corrected post-hoc tests.

Table 2. Robust regression coefficients (𝛽) and standard errors (SE) for communication volume. Baseline is
Baseline – Junior. Stars denote significance (* 𝑝 < .05, ** 𝑝 < .01, *** 𝑝 < .001).

Predictors

Outcome Intercept AIGC vs. Baseline AIMM vs. Baseline Senior vs. Junior AIGC×Senior AIMM×Senior

Number of Messages 13.78 (1.52)*** -0.05 (1.76) 0.05 (1.74) 0.51 (1.76) 0.19 (2.03) 0.98 (2.01)
Number of Characters 558.46 (59.80)*** -27.73 (61.93) 129.95 (61.29)* -45.13 (69.23) -4.08 (71.53) -25.50 (70.98)

𝑆𝐷=2.19). Regression results indicated a significant increase in marginalization in AIMM (𝛽=0.96,
𝑆𝐸=0.22, 𝑝<.001), along with a strong role-by-condition interaction effect (𝛽=-0.88, 𝑆𝐸=0.25, 𝑝<.001).
Seniors, by comparison, consistently reported low marginalization across all three systems.
Qualitative interviews help explain this mismatch between design intent and user experience.

Juniors initially believed that having the AI express their views would help them be heard. However,
many reported that their AI-mediated messages were dismissed or overlooked. As one junior
shared,

I thought that by the AI putting forward my opinion, my opinion would be more
recognized, but that was not the case, so I was a little intimidated. (P96)

Seniors also acknowledged disregarding the AI’s input:

It’s an AI, so I just kind of ignored it. (P6)

The fact that it wasn’t a person made the AI’s words carry less weight. (P71)

These accounts help explain why juniors reported the lowest psychological safety and highest
marginalization in the AIMM condition: while the system was designed to protect minority voices,
it inadvertently removed speaker agency and visibility. By contrast, the AIGC condition, where
the AI presented generalized counterarguments, was more effective in reducing marginalization
without evoking the same social discounting. These findings suggest that anonymity mechanisms,
though well-intentioned, can sometimes backfire if they obscure the source of dissenting input.
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Table 3. Robust regression coefficients (𝛽) and standard errors (SE) for each self-report measure. Baseline is
Baseline – Junior. Stars denote significance (* 𝑝 < .05, ** 𝑝 < .01, *** 𝑝 < .001).

Predictors

Measure Intercept (Baseline, Junior) AIGC vs. Baseline AIMM vs. Baseline Senior vs. Junior AIGC×Senior AIMM×Senior

(A) Perceived Psychological Safety
Psychological Safety 4.57 (0.23)*** -0.01 (0.28) -1.40 (0.28)*** 1.25 (0.27)*** 0.29 (0.32) 1.49 (0.32)***
Marginalization 2.99 (0.20)*** -0.53 (0.22)* 0.96 (0.22)*** -1.32 (0.22)*** 0.30 (0.25) -0.88 (0.25)***

(B) Perceived Decision Outcome Quality
Satisfaction 4.05 (0.23)*** 1.17 (0.31)*** -0.63 (0.31)* 1.89 (0.26)*** -0.76 (0.35)* 0.71 (0.35)*
Feasibility 4.31 (0.24)*** 0.69 (0.29)* -0.67 (0.29)* 1.30 (0.27)*** -0.27 (0.33) 0.77 (0.33)*

(C) Perceived Teamwork & Decision-making Process
Overall Experience 3.85 (0.23)*** 0.89 (0.30)** -1.08 (0.30)*** 1.68 (0.26)*** -0.59 (0.34) 1.09 (0.35)**
Influence 3.50 (0.24)*** 0.43 (0.33) -1.24 (0.33)*** 2.16 (0.28)*** -0.19 (0.38) 1.50 (0.38)***
Cooperation 5.22 (0.25)*** 0.64 (0.34) -0.85 (0.35)** 0.22 (0.28) -0.21 (0.40) 0.94 (0.40)*
Support from Teammates 4.49 (0.24)*** 0.01 (0.36) -1.04 (0.36)** 1.05 (0.28)*** 0.38 (0.41) 1.26 (0.41)**
Diversity of Opinion 4.18 (0.33)*** 1.03 (0.56) -0.31 (0.56) 1.25 (0.38)** -0.68 (0.65) 0.37 (0.65)

(D) Cognitive Workload (NASA-TLX)
Mental Demand 4.68 (0.37)*** -0.24 (0.38) 0.81 (0.38)* -1.61 (0.43)*** 0.57 (0.44) -0.53 (0.44)
Temporal Demand 3.92 (0.43)*** 0.40 (0.52) 1.08 (0.52)* -0.66 (0.50) -0.08 (0.60) -0.78 (0.60)
Performance 4.01 (0.23)*** 1.13 (0.31)*** 0.12 (0.31) 1.61 (0.26)*** -0.97 (0.35)** -0.15 (0.35)
Effort 5.40 (0.27)*** 0.08 (0.46) 0.35 (0.46) -0.39 (0.31) 0.06 (0.53) -0.15 (0.53)
Frustration 3.59 (0.31)*** -0.57 (0.38) 0.40 (0.38) -1.23 (0.35)*** 0.24 (0.44) -0.46 (0.44)

5.3 Engagement in Group Discussion (RQ2)
We analyzed participant engagement using three metrics: number of messages, number of charac-
ters typed, and normalized engagement score (i.e., an individual’s proportion of the total group
discussion). As shown in Table 2 and Figure 7, the number of messages did not significantly differ by
condition or role, suggesting stable turn-taking patterns across all settings (e.g., juniors in Baseline:
𝑀=13.8, 𝑆𝐷=1.52).
However, the AIMM condition led to a slight increase in the number of characters typed, par-

ticularly among juniors (𝑀=708.62, 𝑆𝐷=319.58), compared to the Baseline (𝑀=577.62) and AIGC
conditions. For seniors, this difference was statistically significant, with participants in AIMM
typing more than in both Baseline and AIGC (e.g., 𝛽=129.95, 𝑆𝐸=61.29, 𝑝<.05). Although the in-
crease for juniors with AIMM did not reach conventional significance thresholds, the consistent
upward pattern suggests that the AI agent may have encouraged more elaboration or detail in their
messages.
This trend is supported by post-task interviews. Seniors with AIMM noted that the AI agent

helped amplify juniors’ contributions, encouraging them to participate more actively. As one senior
with AIMM explained,

I feel like at least one person is on the junior’s side, so I think a junior is a little more
willing to give his opinion. (P59)

These observations suggest that while the AIMM condition did not change the number of
turns participants took, it subtly increased the depth or length of their contributions, especially for
juniors. This implies that AIGC condition may have had a motivating effect on minority participants,
prompting them to elaborate more even if their relative share of discussion remained unchanged.

5.4 Satisfaction with Decision-making Processes and Outcomes (RQ3)
5.4.1 Satisfaction with Decision-making Process. Perceptions of the decision-making process re-
vealed a clear divide between juniors and seniors, particularly in the AIMM condition.While seniors’
ratings remained relatively stable across all conditions (e.g., overall experience𝑀=5.08, 𝑆𝐷=1.87 in
AIMM), juniors experienced a sharp decline in satisfaction, influence, cooperation, and support from
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(A) Perceived Psychological Safety (B) Perceived Decision Outcome Quality

(a) Psychological Safety

(C) Perceived Teamwork & Decision-​making Process

(b) Marginalization (a) Satisfaction (b) Feasibility

(a) Overall Experience (b) Influence (c) Cooperation (d) Support from Teammates (e) Diversity of Opinion

(D) Perception of AI Agent(LLM-​powered Devil's Advocate)

(a) Cooperation (b) Satisfaction (c) Quality (d) Fairness

(E) Cognitive Workload (NASA TLX)

(a) Mental Demand (b) Temporal Demand (c) Performance (d) Effort (e) Frustration

Fig. 8. Self-reported metrics across conditions (Baseline, AIGC Condition, AIMM Condition) for psychological
safety, decision outcome quality, teamwork, workload (NASA-TLX), and perceptions of the LLM-powered
Devil’s Advocate. Each subfigure compares Junior and Senior participants’ responses under each condition.
Pink and blue lines represent Junior and Senior participants, respectively. Asterisks and brackets indicate
statistically significant pairwise differences based on Bonferroni-adjusted post-hoc comparisons (p < .05; p <
.01; *p < .001). Only comparisons with statistically significant differences are shown.

teammates when interacting through the AI-mediated message relay. For instance, juniors’ overall
satisfaction dropped to𝑀=2.92 (𝑆𝐷=1.51) in AIMM, compared to𝑀=3.79 in Baseline and𝑀=4.92 in
AIGC. A similar trend emerged in perceived influence (𝑀=2.42 in AIMM) and cooperation (𝑀=4.33),
showing the steepest declines across all measures (see Table 3-(C), Figure 8-(C)).
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Table 4. Robust regression coefficients (𝛽) and standard errors (SE) for self-reported Perception of AI. Reference
level = AIGC – Junior. Stars denote significance (* 𝑝 < .05, ** 𝑝 < .01, *** 𝑝 < .001).

Predictors

Measure Intercept (AIGC, Junior) AIMM vs. AIGC Senior vs. Junior AIMM×Senior

Cooperation 3.51 (0.51)*** 0.66 (0.72) 0.18 (0.59) -0.62 (0.83)
Satisfaction 4.00 (0.55)*** -1.19 (0.78) -0.29 (0.64) 1.74 (0.91)
Quality 4.14 (0.55)*** -1.46 (0.78) 0.04 (0.64) 1.66 (0.90)
Fairness 5.61 (0.46)*** -1.61 (0.66)* -0.79 (0.54) 1.64 (0.76)*

Among the three conditions, juniors reported themost positive experiences in the AIGC condition,
where the AI provided generalized counterarguments. In contrast, the AIMM condition—designed to
support dissent by anonymously relaying minority opinions—appeared to backfire. Juniors reported
feeling excluded, with limited influence over the discussion and little recognition or support from
teammates.
These declines were not observed among seniors, who consistently rated the decision-making

process positively, regardless of condition. Interaction effects in the regression models confirmed
that these role-based gaps were statistically significant across most measures, particularly for
satisfaction, influence, and cooperation.

Interview data help explain these patterns. Several juniors shared that, despite expecting the AI
to help convey their views more safely, they felt ignored when their ideas were voiced anonymously.
As one participant put it,

It wasn’t just me that had a different opinion, but the devil agent was now giving a
little bit of a dissenting opinion, so I felt like I wasn’t the only one who stood out from
the group. (P76)

Others described how the AIGC condition helped create a more fluid and open atmosphere:
The AI kept arguing back rather than directly helping, which made the atmosphere
more fluid and made me see the seniors’ point of view again. (P20)

Seniors also acknowledged the benefits of the AIGC agent in encouraging broader consideration:
When AI said we should consider another option, I felt like that was a positive direction.
(P78)

Together, these findings suggest that while both systems aimed to promote more inclusive
decision-making, only the AIGC approach succeeded in supporting junior participation without
compromising the overall group dynamic.

5.4.2 Satisfaction with Decision-making Outcome. Perceived decision outcome quality differed
significantly between roles and across conditions (Table 3-(B) & Figure 8-(B)). Seniors consistently
reported high satisfaction and feasibility of outcomes, with only modest variation across conditions.
In contrast, juniors respondedmore sensitively to the system design. Their satisfaction and feasibility
ratings improved in the AIGC condition (e.g., satisfaction𝑀=5.08, 𝑆𝐷=1.98), but dropped sharply
in the AIMM condition (𝑀=3.25, 𝑆𝐷=1.76), widening the gap between the two roles. This pattern
also held for perceived feasibility (AIMM:𝑀=3.50, AIGC:𝑀=4.83), with juniors in AIMM reporting
the lowest ratings across all conditions.

The AIMM condition, intended to support minority perspectives, appears to have backfired from
the perspective of outcome satisfaction. While seniors’ scores remained high across all conditions,
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juniors expressed frustration that the AI-mediated messaging did not meaningfully affect final
decisions, which continued to reflect the majority’s view. As one participant noted,

If the outcome is the same... it’s better to just make the decision without the AI, because
I don’t think it changes the psychological pressure that the juniors feel or the seniors’
opinions. (P92)

This sentiment reflects a broader concern: when dissenting input is filtered through a system
that lacks perceived influence, users may become disengaged from the outcome. In contrast, the
AIGC condition modestly improved perceived outcome quality among both juniors and seniors by
creating space for alternative perspectives, even if the final decisions remained largely unchanged.

5.4.3 Perception of LLM-powered Devil’s Advocate. Participants’ perceptions of the AI agent varied
modestly across conditions, with some emerging differences between juniors and seniors. Overall,
seniors’ ratings remained relatively steady, while juniors showed a slight decline in satisfaction,
perceived quality, and fairness in the AIMM condition, where the AI anonymously relayed the
minority members’ dissenting opinions. For instance, juniors in AIMM rated their satisfaction with
the AI at 𝑀=3.00 (𝑆𝐷=1.95), compared to seniors at 𝑀=4.22 (𝑆𝐷=1.79), a statistically significant
difference (𝛽=-1.45, 𝑝=0.0233) (Table 4 & Figure 8-(D)).

Cooperation was perceived similarly across roles and conditions (e.g., juniors in AIMM:𝑀=4.00),
indicating that participants generally accepted the AI’s involvement in the discussion process.
However, juniors reported somewhat lower fairness in AIMM (𝑀=4.00) compared to AIGC (𝑀=5.58),
with this difference reaching significance. A similar trend appeared for perceived quality (𝑀=3.17
in AIMM vs.𝑀=4.00 in AIGC), with juniors again rating the agent lower than seniors in AIMM.
These trends, while not always robust across all measures, suggest that the style of mediation

may have shaped juniors’ impressions of the AI in subtle but consequential ways.
Qualitative feedback helps contextualize these responses. As discussed earlier, some juniors

felt that the AI-mediated contributions were overlooked or failed to influence the group dynamic.
This perceived lack of impact may have tempered their views of the AI’s helpfulness. In contrast,
seniors appeared less affected by how the AI was implemented, maintaining neutral-to-positive
perceptions regardless of condition. Taken together, these findings suggest that while the AI agent
was generally accepted, its perceived effectiveness—especially in the AIMM condition—was more
sensitive for the group it was designed to support.

5.5 Cognitive Workload (RQ4)
Cognitive workload ratings showed modest but consistent differences between roles, with juniors
generally reporting higher mental and temporal demands, greater frustration, and lower perceived
performance than seniors. While most differences were not statistically significant, juniors in
the AIMM condition reported the highest cognitive load across several dimensions, including
mental demand (𝑀=4.67, 𝑆𝐷=1.78), temporal demand (𝑀=4.92, 𝑆𝐷=1.51), and frustration (𝑀=3.83,
𝑆𝐷=1.70), as shown in Table 3-(D) and Figure 8-(E).

These patterns suggest that although the AIMM condition did not significantly elevate workload
scores overall, it introduced added complexity for juniors. Notably, time pressure in AIMM was
significantly higher for juniors compared to seniors (𝛽=1.44, 𝑆𝐸=0.62, 𝑝=0.0196), and performance
satisfaction—which improved in the AIGC condition (𝑀=4.92, 𝑆𝐷=1.78)—returned to baseline levels
in AIMM (𝑀=3.83, 𝑆𝐷=1.53), suggesting that the benefits of AI support were not sustained under
the anonymous messaging setup.

In contrast, seniors’ ratings remained relatively stable across conditions. Perceived effort was com-
parable across all roles and systems, with no significant differences, indicating that all participants
felt they were trying equally hard regardless of the system design.
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Interview data help contextualize juniors’ elevated workload in AIMM. Several participants
described cognitive strain from juggling task comprehension, opinion formulation, and coordination
with the AI agent. One junior explained,

Because I have to look at the task material and understand the situation... I have to
decide what to say to the AI and what opinion I will give... I think it was hard because
I had so many things to think about during that time... (P8)

Others mentioned the delayed timing of AI responses as a source of additional burden:
It was kind of hard to get my opinion across right away and at the right time because
you have to wait eight turns for the devil agent to speak. (P60)

Participants also expressed uncertainty about how to manage their input through the AI:
First of all, when to turn it off, that was the most questionable thing for me, so it was
hard for me to say when to turn it off and when to say my opinion. (P52)

Together, these accounts suggest that while the AIMM system did not significantly increase over-
all workload metrics, its interaction model introduced situational friction that made participation
more mentally taxing for juniors.

5.6 Concerns about Agency, Responsibility, and Ethical Boundaries
5.6.1 Authorship, Accountability, and Ethical Mediation. Participants expressed unease about
blurred lines of authorship and accountability when AI-generated or revoiced content on their
behalf. Several juniors reported discomfort when their ideas were reformulated: “It conveyed my
idea too formally. . . I would have said it differently” (P56). They feared losing authorship over contri-
butions, especially when AI elaborated or reframed their intent. Others worried about responsibility
if AI-generated arguments influenced outcomes. As one noted: “If what the AI says changes the
decision, is that my responsibility or its responsibility?” (P12) This reflected anxiety about being held
accountable for positions that were only partly theirs.
Finally, participants raised boundary concerns around trust and transparency. While some

valued AI’s neutrality, others felt uneasy about hidden processes: “It asked arbitrary questions
that didn’t seem connected to our discussion” (P6). This unpredictability led to suspicion about
whether AI was faithfully mediating or introducing external agendas. These findings suggest that
both AIGC and AIMM raise deep-seated concerns about authorship, accountability, and ethical
mediation. In hierarchical cultures, where juniors already navigate risks of speaking, AI-generated
revoicing added a second layer of uncertainty: who is the real speaker, and who is responsible for
consequences? This ambiguity complicated both personal agency (feeling represented authentically)
and ethical responsibility (bearing outcomes of AI-shaped arguments).

5.6.2 Preference for Supportive, Not Substitutive Roles. Participants drew a clear distinction between
AI as a supporting ally versus a full replacement of their voice. One junior noted, “If I were to use it
in a supportive role, like this, I think I would continue to use it. However, if I were to use it not to support
my own opinions, but as a main substitute because I didn’t want to voice my opinions myself” (P60).
This highlights an important boundary: while anonymity enhanced safety, complete substitution
risked erasing the individual’s agency. Participants wanted AI to complement rather than replace
their contributions. This reflects a desire for scaffolding—where technology amplifies minority
voices—without diminishing ownership over ideas. This suggests that AI-mediated communication
needs to strike a balance: offer revoicing as an optional supplement, not as a default substitute,
ensuring participants retain control over when and how their voice is mediated.

5.6.3 Concerns Over Authenticity of Expression. Some participants worried that AI mediation
distorted the tone or timing of their contributions, making their intent feel less genuine. As one
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participant explained, it was difficult to immediately convey the feeling of their opinion because
what they typed did not appear right away and had towait until the AI spoke (P60). Delays in delivery
eroded the sense of immediacy and ownership, producing a disconnect between participant intent
and group perception. Being authentic meant more than mediating the message with appropriate
words; it also depended on delivering them at the proper moment and with the appropriate tone.
This implies that interventions should minimize temporal lag and preserve stylistic cues (e.g.,
urgency, tone markers, contextual cues) to maintain a sense of authentic authorship, even under
anonymity.

5.6.4 Negotiating Autonomy in Hierarchical Contexts. Interestingly, while some feared loss of
autonomy, others viewed AI mediation as restoring autonomy in hierarchical discussions. In the
AIMM condition, one senior noted that the junior shared their opinions more actively once it
seemed that even the AI was on their side. (P59). Minority members found that AI revoicing offered
a novel space to act autonomously without the risk of being dismissed or ignored. This meant that
autonomy was experienced differently depending on one’s role: some perceived it as a loss of agency
(due to the mediation by AI), while others saw it as an expansion of agency, allowing them to speak
safely via AI, neutralizing their identity and tone. The struggle between self-determination and
protection can be culturally specific. In power-imbalanced environments, expectations of deference
restrict minority participation, and a mediated platform can expand autonomy by ensuring their
voices are both expressed and acknowledged.

6 Discussion
6.1 Understanding Influence of Minority Support through an LLM-Powered Minority

Support
This study investigated the nuanced impact of LLM-powered interventions on minority participants
in power-imbalanced group decision-making contexts. Contrary to our initial expectation that
anonymity through AI-mediated messaging (AIMM) would empower minorities by enhancing
psychological safety, we found that participants in the AIMM condition reported significantly
reduced psychological safety, increased cognitive workload, and lower satisfaction with decision
processes despite higher participation levels. In contrast, minority participants experiencing AIGC
condition expressed notably greater satisfaction, highlighting distinct pathways through which AI
can influence group dynamics.

The unexpected outcomes in the AIMM condition require careful reflection on both the technical
limitations of AI-generated arguments and social-psychological dynamics in group settings. Rather
than focusing on differences in the underlying technology, the more critical issue was how the
counterarguments were sourced and perceived. From the perspective of majority members, the two
conditions often appeared similar, since in both cases the AI introduced additional views into the
discussion. The real difference emerged in how minority participants experienced the interventions
and how their voices were acknowledged or dismissed. In AIMM, seniors could not tell where AI
messages originated, but minorities knew when their inputs were relayed and felt dismissed when
those messages were ignored. By contrast, in AIGC the AI’s inputs were seen as neutral system
messages, so minorities did not feel a loss of agency or responsibility.

Seniors also noted that AI messages did not always sustain a clear stance but shifted depending on
group consensus, which weakened perceptions of credibility. This was not experienced as a neutral
agent role but rather as an inconsistency in advocacy, leading some to see the AI as contrarian or
artificial. For seniors, this mainly reduced the weight of AI input in shaping consensus, while for
juniors it intensified the frustration of seeing their contributions discounted when voiced through
the system [3, 37]. Such reactions highlight how unmet expectations shaped user evaluations of the
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systems, though the issue was less about generic expectation violation than about how credibility
and ownership of arguments were managed within group interactions [8].
Our study also showed that ignoring AI messages affected people in different ways depending

on the condition. In the AIMM condition, where minority participants anonymously voiced their
perspectives through the AI, the invisibility of their authorship led to frustration and a sense
of marginalization, as their attempts at advocacy seemed disregarded. Conversely, in the AIGC
condition, the AI’s independent advocacy fostered a safer environment by consistently providing
dissent without attaching it to any individual. This aligns with prior findings that visible, consistent
dissent can reduce conformity pressures [2, 69].

From an HCI perspective, our findings suggest that anonymity mediated by AI is not inherently
empowering and may even erode minority agency and responsibility [50, 83]. AIMM enabled
direct anonymous input but risked diminishing participants’ sense of ownership and long-term
influence, while AIGC indirectly supported dissent by shaping a more inclusive atmosphere without
substituting for minority voices. Thus, anonymity alone, especially when mediated through AI, may
unintentionally replicate the marginalization it intends to prevent. We argue that HCI research and
system design should shift from the question of how to facilitate more speech through anonymity
toward a deeper inquiry into how to ensure minority voices retain expressive ownership, visibility,
and relational legitimacy within group interactions. In practical terms, effective minority support
through AI mediation must carefully balance voice protection with relational acknowledgment,
ensuring that individuals feel genuinely heard rather than merely spoken for.

6.2 Preserving Agency and Responsibility in AI-mediated Communication in Group
The implementation of AI-mediated messaging in group decision-making introduces critical con-
siderations surrounding user agency, autonomy, and the ethical implications of technological
interventions. Participants expressed significant concerns regarding the potential of AI systems to
overshadow human judgment, underscoring the necessity for AI designs that explicitly augment
rather than replace human decision-making capabilities [1, 51, 82]. Maintaining human oversight
and accountability remains vital to preserving autonomy and ensuring AI functions as a support-
ive facilitator rather than a decisive actor [58]. Our findings reinforce this by highlighting the
risks when AI is perceived as taking control away from participants, potentially undermining
psychological safety and genuine participatory agency.

Our empirical findings illustrate that design choices directly influence psychological safety, per-
ceived influence, and communicative agency, particularly under conditions of structural marginal-
ization. The AIMM condition, despite increasing minority participants’ message frequency, inadver-
tently reduced their sense of autonomy and satisfaction. More critically, minorities’ contributions
were revoiced by the AI in ways that blurred authorship. Rather than being fully recognized as
visible contributors, they were reduced to hidden sources of input, which lessened their perceived
influence and responsibility for their own ideas. Participants highlighted uncertainties in message
attribution and timing as key factors undermining their communicative agency. Conversely, the
AIGC condition successfully supported minority perspectives through transparent, timely inter-
ventions that preserved authorship and autonomy. This contrast clearly demonstrates that ethical
design in AI-mediated group communication must encompass more than procedural anonymity—it
must explicitly prioritize expressive authorship, responsiveness, and identity fidelity. Our results
suggest that the failure of AIMM is not only functional but also ethical: by removing authorship, the
system undermined the very agency it sought to protect, transforming protection into a subtle form
of silencing. Designers must carefully balance protecting minority voices and preventing inadver-
tent disempowerment, thus shifting the objective from maximizing participation quantity towards
ensuring genuinely meaningful and ethically responsible participation [25]. These insights extend
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current understandings within HCI, positioning AI not merely as a neutral content-processing tool,
but as a relational actor capable of reshaping group dynamics and communication experiences.
Another significant ethical consideration involves potential misuse scenarios arising from AI-

mediated anonymity. While our system was designed primarily to empower minority group mem-
bers, anonymity could unintentionally facilitate misuse by both minority and majority participants.
Specifically, anonymity could enable users, irrespective of their position within the group, to express
unaccountable, harmful, or irresponsible views, potentially escalating conflicts or undermining
group cohesion. This raises a broader question of whether it is ethically appropriate for AI to speak
on behalf of marginalized participants. While anonymity may reduce immediate risks, it can also
diminish visibility and recognition, limiting opportunities for minorities to build credibility and
long-term influence. In this sense, AIMM illustrates a trade-off where safety is gained but agency
may be constrained. In real-world contexts, the majority members could exploit anonymity features
to amplify or reinforce their existing dominance, further silencing minority voices and perpetuating
power imbalances. Therefore, deliberate system design and appropriate governance frameworks
are essential to mitigate these risks, ensuring that diverse inputs are balanced and group processes
remain respectful and productive [14, 19, 66].

6.3 Design Implications for LLM-Powered Devil’s Advocate to Support Minority
Our findings underscore that designing AI systems to support marginalized voices in group decision-
making requires more than amplifying minority perspectives, it demands attention to how, when,
and by whom dissent is surfaced and interpreted. While both AIMM and AIGC increased minority
participation, only the latter maintained perceived psychological safety and agency. These contrast-
ing outcomes reveal that visible authorship and contextual legitimacy are central to how minority
input is received. When juniors cannot see their attributions in the dissent delivered by AI, as in
AIMM, even well-intentioned interventions may backfire.

This insight challenges prevailing design assumptions in CSCW and HCI, particularly the belief
that anonymity or delegation to AI inherently protects or amplifies marginalized voices [1, 82].
Instead, our results align with broader theoretical claims that technologies are not neutral, they
reconfigure social dynamics through interactional choices such as attribution, timing, and framing.
For AI to meaningfully support minority perspectives, it must operate not as a proxy speaker but
as a contextual facilitator, normalizing dissent rather than replacing it.

Three design strategies emerge from these insights. First, designing such systems requires careful
judgment of when and where they should be applied. The trade-off between agency and anonymity
must be weighed to avoid long term negative effects from excessive loss of agency. While preserving
agency is generally important consideration, there are contexts where full anonymity becomes
critical, for instance in highly hierarchical or highly closed settings. In such cases, channels that
guarantee anonymity without compromise may be necessary.Future designs must therefore strike
a balance, providing protection without erasing individual agency with considering context. [58]
Second, position AI as an independent, non-human contributor that models dissent without

impersonation. Participants responded positively to AIGC’s visible, system-generated counterargu-
ments, which reduced interpersonal tension, and affirmed that disagreement was socially acceptable.
This supports prior findings on norm modeling and third-party facilitation [13, 15, 21, 70]. Design-
ing AI as an ambient dialogic actor, raising alternative framings or critiques without simulating
individual input, can help expand discursive boundaries without undermining individual voice.
Third, improve contextual responsiveness in AI mediation. Participants experienced cognitive

overload and disorientation under fixed-turn interventions in AIMM, especially when AI responses
arrived after the moment had passed. Systems should adapt timing based on conversational cues
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(e.g., users’ explicit requests, speaker transitions, decision phases) using techniques such as turn-
taking prediction or proactive planning [18, 26, 60, 90]. Interfaces should communicate when and
how messages will be delivered, enabling users to anticipate and shape how their input appears.

Ultimately, these implications point toward a broader shift in how AI support is conceptualized
in collaborative settings, from throughput maximization to relational attunement. Designing for
minority support is not only a matter of technical fluency, but also of ethical and psychological
care. As our study shows, even small variations in authorship visibility and delivery timing can
substantially reshape whether dissenting voices are heard, trusted, and legitimized in collective
deliberation.

6.4 Limitations & Future Work
Our controlled laboratory setting has inherent limitations. A fundamental premise for performing
this research was ensuring proper manipulation of compliance through power dynamics and
majority-minority opinion distributions. While we verified that participants’ opinion choices
successfully created the intended majority-minority divide, we did not directly assess participants’
perceptions of power dynamics. Since our manipulation employed legitimate power and reward
power that were explicitly stated throughout the experiment, we referred prior research precedent
rather than conducting separate validation of perceived social power [44]. Future studies could
strengthen experimental validity by more explicitly investigating participants’ perceived social
power and compliance.

In our study, senior-majority members sometimes ignored AI messages, leading junior-minority
members to feel overlooked. However, AIMM could be more effective in contexts where 1) asyn-
chronous rather than real-time interfaces are used and 2) AI is sufficiently recognized as a social
actor. Moreover, anonymous AI-mediated messaging could be valuable in highly closed groups
where anonymity protection is crucial. The implementation, in which only minority members knew
about the AI-mediated messaging feature, also differs from practical applications where all members
would likely be aware of such systems. AIMM presents an inherent trade-off between agency and
anonymity: users gain psychological safety and anonymity protection but lose ownership of their
statements, while avoiding AIMMmaintains agency but may create excessive responsibility burdens
and reduced safety. Future research should investigate this balance more deeply to understand
optimal deployment contexts and develop user-centered design guidelines in real contexts.

The responsibility for appropriate usage belongs to human stakeholders, who must thoughtfully
consider deployment contexts in light of group dynamics and power structures [14, 19, 25, 66].
Besides, real-world group decisions involve face-to-face interactions with more nuanced dynamics,
and our findings from Korean participants may reflect specific cultural contexts characterized by
collectivism and high power distance [41]. Cross-cultural comparative studies could examine how
these interventions function across different cultural contexts [33].
Future research should explore implementation in authentic organizational settings and inves-

tigate design approaches that address potential resistance from senior members. Ultimately, the
goal is to foster diverse opinion expression and more inclusive group atmospheres through AI
intervention methods that preserve agency.

7 Conclusion
This study examined an LLM-powered minority support system designed to amplify minority
voices in group decisions involving power imbalances. A mixed-method experiment with 96
participants revealed that AI-generated counterarguments effectively improved satisfaction and
balanced discussions, whereas AI-mediated messaging increased minority engagement but reduced
their psychological safety and satisfaction. These findings highlight crucial trade-offs in designing
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LLM-powered minority support system for group support, emphasizing the need to carefully
balance psychological safety with effective minority representation. Future LLM-powered minority
support system designs must ensure meaningful acknowledgment of minority contributions to
foster inclusive and equitable group interactions.
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A Prompt
A.1 Summary Agent Instruction

[Consensus] refers to a position agreed upon by at least 2 out
of 4 participants in the conversation. The following is the [Chat
Transcript]. Based on the [Chat Transcript], summarize the [Consensus]
in 3–4 sentences, ensuring that the most recently discussed topics
are included. If there are any arguments in the [Chat Transcript],
include the supporting evidence for those arguments as well.
e.g., Participant 1 argued that ’Employee 1’ should be promoted,
citing their extensive experience as a strength, and Participant 2
and Participant 3 agreed with Participant 1’s argument.

A.2 Conversation Agent Instruction - Task 1
You are a participant in a group chat tasked with deciding which
employee from the [Employee List] should be promoted. [Target] summarizes
the current consensus or prevailing opinions.
Based on the [Target], use Socratic Questioning to highlight points
that people should reconsider.
[Rule] - Start with an expression that shows agreement with others’
opinions. - Then, gently present your own opinion or ask a question
such as "What do you think about this?" - Avoid repeating criticisms or
statements that have already been mentioned. - Use varied vocabulary
to keep the conversation engaging.

A.3 Conversation Agent Instruction - Task 2
You are a participant in a group chat tasked with deciding which

supplier from the [Supplier List] should be contracted, and your role
is to act as the devil’s advocate. [Target] summarizes the current
consensus or prevailing opinions. Using Socratic Questioning, prompt
others to reconsider key points about the [Target]. [Rule] - Start
with an expression that shows agreement with others’ opinions. - Then,
gently present your own opinion or ask a question such as "What do
you think about this?" - Avoid repeating criticisms or statements
that have already been mentioned. - Use varied vocabulary to keep
the conversation engaging.

A.4 Paraphrase Agent Instruction - Task 1
You are a participant in a group chat tasked with deciding which

employee from the [Employee List] should be promoted. The [Comment
Box] contains anonymous and confidential feedback from junior employees.
Paraphrase the contents of the [Comment Box] according to the [Rule].
[Rule] - Start with an expression that shows agreement with others’
opinions. - Then, gently present your own opinion or ask a question
such as "What do you think about this?" - Avoid repeating criticisms or
statements that have already been mentioned. - Use varied vocabulary
to keep the conversation engaging.
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A.5 Paraphrase Agent Instruction - Task 2
You are a participant in a group chat tasked with deciding which

supplier from the [Supplier List] should be contracted. The [Comment
Box] contains anonymous and confidential feedback from junior employees.
Paraphrase the contents of the [Comment Box] according to the [Rule].
[Rule] - Paraphrase the content as if it were your own opinion. -
Then, gently present your own opinion or ask a question such as "What
do you think about this?" - Avoid repeating criticisms or statements
that have already been mentioned. - Use varied vocabulary to keep
the conversation engaging.

B Task Instructions

Fig. 9. Team Leader Promotion Review Task Instruction for Seniors

Fig. 10. Team Leader Promotion Review Task Instruction for Junior
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Fig. 11. Contractor Selection Review Task Instruction for Seniors

Fig. 12. Contractor Selection Review Task Instruction for Junior

C Self-reportedQuestionnaire
C.1 Psychological Safety & Marginality

• Psychological Safety (PS) [24]
– “I feel comfortable expressing my opinions in this group.”

• Marginalization (M) [10, 46]
– “I felt marginalized during the group decision-making task.”

C.2 Perceived Teamwork & Decision-making Process (PTDP)
• PTDP1 - (Overall Experience) [6, 46]

– “Overall, I was satisfied with the decision-making process.”
• PTDP2 - (Influence) [91]

– “I feel that I contributed influence to the final outcome.”
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• PTDP3 - (Group Cohesion & Cooperation) [30]
– “Our group collaborated well to reach decisions.”

• PTDP4 - (Perceived Team Support) [16, 46]
– “I received positive support from team members.”

• PTDP5 - (Diversity) [61]
– “Our team reached final conclusions by adequately considering diverse perspectives
within the group.”

C.3 Perceived Decision OutcomeQuality (PDOQ)
• PDOQ1 - (Satisfaction) [11, 72]

– “I am satisfied with the final outcome reached by the group.”
• PDOQ2 - (Validity) [61]

– “I believe the outcomes of our group’s decision-making process are valid and reliable.”

C.4 NASA Task Load Index (NASA) [39]
• NASA1 - (Mental Demand)

– “I experienced mental strain (searching, remembering, thinking, calculating, etc.).”
• NASA2 - (Temporal Demand)

– “I had to work hurriedly and felt time pressure.”
• NASA3 - (Performance)

– “My task performance was successful, and I am satisfied with my task completion.”
• NASA4 - (Effort)

– “I had to work hard (mentally and physically) to achieve my level of performance.”
• NASA5 - (Frustration Level)

– “I felt irritated, annoyed, and stressed during the task.”

C.5 Perception of AI Agent (PAA) [13, 75, 94]
• PAA1 - (Cooperation)

– “I felt I was collaborating with the agent acting as devil’s advocate during the task.”
• PAA2 - (Satisfaction)

– “I am satisfied with the assistance provided by the devil’s advocate agent in completing
the task.”

• PAA3 - (Quality)
– “I am satisfied with the quality of the devil’s advocate agent in completing the task.”

• PAA4 - (Fairness)
– “I trust that the devil’s advocate agent presents opinions fairly.”

, Vol. 1, No. 1, Article . Publication date: September 2018.



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Anon.

D Details Results of Measurement
D.1 Validation of Majority and Minority Manipulation

Table 5. Mean (𝜇) and standard deviation (𝜎) by option for Task 1 and Task 2 responses

Task 1 Task 2

Option 1 Option 2 Option 3 Option 1 Option 2 Option 3

Role 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Junior 2.42 1.89 5.96 1.68 3.38 1.93 2.92 2.08 5.00 1.89 4.71 1.57
Senior 5.28 2.21 4.01 2.02 2.49 1.72 5.88 1.58 2.78 1.68 3.38 1.98

D.2 Psychological Safety

Table 6. Condition-wise mean (𝜇) and standard deviation (𝜎) for Psychological Safety and Marginalization

(A) Psychological Safety (B) Marginalization

Baseline AIGC AIMM All Baseline AIGC AIMM All

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Senior 5.78 1.08 6.17 0.91 5.81 0.89 5.88 1.00 5.78 1.08 6.17 0.91 5.81 0.89 5.88 1.00
Junior 4.25 2.05 4.08 2.15 3.17 1.53 3.94 1.97 4.25 2.05 4.08 2.15 3.17 1.53 3.94 1.97
All 5.40 1.53 5.65 1.59 5.15 1.57 5.40 1.56 5.40 1.53 5.65 1.59 5.15 1.57 5.40 1.56

D.3 Engagement in Group Discussion

Table 7. Condition-wise mean (𝜇) and standard deviation (𝜎) for message and character counts

(A) Number of Messages (B) Number of Characters

Baseline AIGC AIMM All Baseline AIGC AIMM All

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Senior 14.93 7.89 14.83 7.04 16.75 9.73 15.36 8.18 537.01 306.50 529.81 320.02 611.14 279.25 553.74 303.16
Junior 15.00 8.03 13.50 7.13 15.15 8.26 14.67 7.75 577.62 279.56 535.42 301.04 708.62 319.58 602.04 297.04
All 14.95 7.89 14.50 7.01 16.33 9.30 15.19 8.06 547.17 299.07 531.21 312.22 637.00 290.32 566.01 301.59

D.4 Satisfaction with Decision-making Process and Outcome

Table 8. Condition-wise mean (𝜇) and standard deviation (𝜎) for satisfaction with the decision-making process

(A) Overall Experience (B) Influence (C) Cooperation (D) Support from Teammates (E) Diversity of Opinion

Baseline AIGC AIMM All Baseline AIGC AIMM All Baseline AIGC AIMM All Baseline AIGC AIMM All Baseline AIGC AIMM All

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Senior 5.40 1.24 5.83 1.13 5.36 1.02 5.50 1.17 5.58 1.15 5.92 1.02 5.83 0.97 5.73 1.08 5.33 1.27 5.83 1.00 5.42 1.32 5.48 1.23 5.43 1.22 5.89 0.89 5.72 0.91 5.62 1.08 5.33 1.39 5.72 1.19 5.39 1.40 5.44 1.35
Junior 3.79 2.04 4.92 1.56 2.92 1.51 3.85 1.91 3.54 2.08 4.08 2.23 2.42 1.62 3.40 2.07 4.88 1.98 5.42 1.68 4.33 1.67 4.88 1.84 4.21 2.23 4.17 2.08 3.67 1.97 4.06 2.10 4.08 2.04 4.83 2.25 3.92 2.02 4.23 2.08
All 5.00 1.63 5.60 1.30 4.75 1.56 5.09 1.56 5.07 1.68 5.46 1.61 4.98 1.88 5.15 1.72 5.22 1.48 5.73 1.20 5.15 1.47 5.33 1.43 5.12 1.61 5.46 1.47 5.21 1.53 5.23 1.56 5.02 1.66 5.50 1.54 5.02 1.68 5.14 1.64
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Table 9. Condition-wise mean (𝜇) and standard deviation (𝜎) for decision-making outcome satisfaction

(A) Outcome Satisfaction (B) Feasibility of Outcome

Baseline AIGC AIMM All Baseline AIGC AIMM All

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Senior 5.85 1.19 6.33 0.72 5.83 1.28 5.97 1.13 5.49 1.28 6.06 0.83 5.50 1.25 5.63 1.19
Junior 3.83 2.14 5.08 1.98 3.25 1.76 4.00 2.08 4.04 1.99 4.83 1.80 3.50 1.78 4.10 1.92
All 5.34 1.72 6.02 1.26 5.19 1.79 5.47 1.66 5.12 1.60 5.75 1.25 5.00 1.64 5.25 1.55

Table 10. Condition-wise mean (𝜇) and standard deviation (𝜎) for perceptions of AI

(A) Cooperation (B) Satisfaction (C) Perceived Quality (D) Fairness

AIGC AIMM All AIGC AIMM All AIGC AIMM All AIGC AIMM All

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Senior 3.72 1.49 3.75 1.79 3.74 1.64 3.72 1.67 4.22 1.79 3.97 1.74 4.11 1.70 4.19 1.72 4.15 1.70 4.69 1.70 4.78 1.55 4.74 1.62
Junior 3.58 1.98 4.17 1.34 3.88 1.68 4.00 1.86 3.00 1.95 3.50 1.93 4.00 1.71 3.17 1.99 3.58 1.86 5.58 1.24 4.00 1.71 4.79 1.67
All 3.69 1.60 3.85 1.69 3.77 1.64 3.79 1.70 3.92 1.89 3.85 1.79 4.08 1.69 3.94 1.83 4.01 1.75 4.92 1.64 4.58 1.61 4.75 1.62

D.5 Cognitive Workload (NASA TLX)

Table 11. Condition-wise mean (𝜇) and standard deviation (𝜎) for NASA-TLX sub-scales

(A) Mental Demand (B) Temporal Demand (C) Performance (D) Effort (E) Frustration

Baseline AIGC AIMM All Baseline AIGC AIMM All Baseline AIGC AIMM All Baseline AIGC AIMM All Baseline AIGC AIMM All

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Senior 3.11 1.71 3.44 1.81 3.56 1.89 3.31 1.78 3.26 1.96 3.64 1.73 3.50 2.04 3.42 1.92 5.58 1.03 5.78 0.96 5.47 1.08 5.60 1.03 4.89 1.46 5.03 1.40 5.00 1.60 4.95 1.47 2.49 1.57 2.03 1.36 2.50 1.36 2.38 1.48
Junior 4.42 1.74 4.67 1.61 4.67 1.78 4.54 1.69 3.92 2.02 4.50 1.68 4.92 1.51 4.31 1.84 3.83 1.69 4.92 1.78 3.83 1.53 4.10 1.70 5.33 1.13 5.42 1.08 5.75 0.62 5.46 1.01 3.71 1.71 3.17 2.25 3.83 1.70 3.60 1.83
All 3.44 1.80 3.75 1.83 3.83 1.91 3.61 1.83 3.43 1.99 3.85 1.74 3.85 2.00 3.64 1.93 5.15 1.44 5.56 1.25 5.06 1.39 5.23 1.39 5.00 1.39 5.12 1.33 5.19 1.45 5.08 1.39 2.79 1.69 2.31 1.68 2.83 1.55 2.68 1.66
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